Fuel Tech Experts
  • Contact
  • Help Articles
    • Air Intake Cleaning
    • Carbon Cleaners
    • Cetane Boosters
    • DPF Cleaning & Maintenance
    • EGR Cleaning & Maintenance
    • Engine Oils
    • Engine Tuning / Mapping & Tuning Boxes
    • Fleet & Commercial Solutions
    • Fuel Addtives
    • Fuel Quality
    • Fuel Saving
    • Fuel System Cleaning
    • Heating Oil Additives
    • Misfuelling Devices
    • Oil Additives
    • Reducing Emissions
    • TFSI Direct Injection Carbon
    • Turbo Cleaning & Maintenance
    • Waterless Engine Coolant

Tag Archives: fuel conditioner

Carbon Cleaners, Fuel Addtives, Fuel System Cleaning

Using Fuel Additives at Higher Dosages – Overdosing

March 13, 2015 Andy 14 Comments

I am regularly asked whether fuel additives can be added at a higher dose or added to less fuel to make a more potent concentrate and whether this is more beneficial.

The answer in most cases is no. This is because detergents, cetane improvers, dispersants, lubricants, etc., are designed to work with a specific amount of fuel. This ensures that any deposits are removed and dispersed in a controlled manner and aren’t purged through the system too quickly.  It also reduces the risk of overloading the fuel with too much cetane improver or other functions that risk negating the benefits they set out to achieve.

For example, amine and Polyetheramine-based fuel cleaners work much better when used with the correct amount of fuel and gradually allow the chemistry to remove deposits in a controlled way. If you add a cleaner designed for sixty litres of fuel to ten litres of fuel, you run the risk of removing deposits too quickly and lose the benefit of the extended duration that sixty litres will provide.

Another reason for this is that fuel cleaners are designed to work with fuel flow where the actual act of removing deposits requires the fuel to be in motion. Deposits are removed layer by layer as the fuel moves through the system. The stronger the concentrate – and the less fuel that is treated – the lesser the amount of total motion that occurs.

Therefore, do not be tempted to treat with a much higher concentration except when professionally instructed to do so and when, for example, a heavily-contaminated fuel injector requires urgent attention. In this instance, some cleaners can be safely added directly to the fuel rail or fuel filter. However, this procedure should be carried out by a professional and is not relevant to in-the-tank fuel cleaners.

Another question we are regularly asked is why some additives require a lot of product, whereas others require such a small amount?

Higher-strength cleaners contain more chemistry and are designed to deliver the maximum amount of cleaning power and functions in a single bottle.  Treat rates typically vary from 100:1 to 200:1.  Regular use fuel conditioners are designed to deliver a modest amount of cleaning power and functions and are safe for continuous use.  Treat rates vary from 500:1 to 10,000:1

Also, note that different chemistries work in different ways. High-strength cleaners, in particular, generally require a much larger volume of chemistry, pibsa, amine, polyetheramine, etc.  Such cleaning power requires volume.

With a regular use 1,000:1 fuel conditioner, noticeable improvements might take a few tanks, whereas a higher strength single-tank cleaner will work within a single tank of fuel.   The challenge is to deliver as many benefits as possible with the smallest amount of product.

fuel additivefuel additive overdosingfuel additivesfuel catalystfuel conditioner
Carbon Cleaners, Fuel Addtives, Fuel System Cleaning

Fuel & Carbon Cleaners – What Happens to the Carbon?

March 10, 2015 Andy 7 Comments

Frequently we are asked about fuel-based carbon cleaners. Specifically, what happens to carbon deposits that are removed through the use of fuel cleaners, and can these cleaners damage an engine?

Let’s begin by discussing the first part of that question.

Within the fuel system, you’ll seldom find carbon itself. You will likely discover sludge, gum, varnish, debris, and similar deposits. The fuel filter captures the larger deposits. These and other deposits that have found their way through the fuel system usually are dissolved and dispersed in a controlled and manageable way using dispersal-based detergents. That’s why it is important to use additives at the recommended dosage so that deposit removal is completed in a controlled manner. High-strength fuel system cleaners that carry out this process typically contain a lubricant to ensure the entire system is lubricated during the cleaning procedure. This too, minimizes the risk of any issues.

Most actual carbon formation occurs in the combustion chamber and post-combustion areas. This includes the turbo’s hot side, intake, inlet valves, EGR, catalytic convertor, DPF, and the remainder of the exhaust tract. The reason why carbon remains is that there is insufficient heat to burn it off. Chemically, a liquid hydrocarbon fuel – such as gasoline or diesel – is very similar to the solidified fuel (carbon) it creates. The difference is that a higher temperature must be reached to ignite and burn solid carbons because the flash point has changed.

High-quality fuel detergents, combined with fuel catalyst technology, reduce the threshold temperature at which the carbons can burn, enabling natural engine processes and inherent heat to gradually “burn off” the deposits. This is undoubtedly the case for combustion chamber deposits.

Sometimes there also is a degree of active cleaning from any cleaning chemistry that can survive the combustion process and thus is still active post combustion. However, as described above, most carbon is removed by reducing the temperature at which it can burn.

It is important to note that there also is a natural cleaning mechanism. When the combustion process is of sufficient quality – generally through an efficient fuel system (no injector deposits), good fuel quality (more often than not, only achieved with fuel conditioners), and an engine that is up to full operating temperature – engines are designed to self-manage carbon build-up. The clean(ish) gases will naturally remove carbons to maintain a respectable level.

The issue arises when this equilibrium is broken, and more carbons are deposited than can be naturally removed. This could be due to a flawed engine design, poor fuel quality, fuel system deposits, driving style, failure to let the engine reach the proper temperature, etc., or a combination of these.

This is why catalyst technology is so vital in carbon cleaning and for keeping a system clean. When a catalyst is added to the fuel, it improves the combustion quality to such a degree that it reduces the amount of hydrocarbons created, particularly when the engine is cold. These cleaner gases then work together with the active work the catalyst is doing to reduce the temperature at which these deposits can burn and be removed.

Essentially, a high-end fuel cleaner and carbon remover provide an environment where the combustion quality is much better, and the exhaust gasses are much cleaner. The cleaner exhaust gasses will naturally scavenge and remove carbons from the combustion and the post-combustion areas. The caveat is that this process requires heat. The catalyst will reduce the temperature at which the carbons can be removed and burned off, but it also needs heat.

This is why it is tough for such chemistries to clean the EGR system. The problem is that an EGR and intake are designed to cool recirculating exhaust gasses. Doing so reduces the efficacy of any post-combustion cleaner or chemistry. Unfortunately, this also applies to the rear of the intake valves of direct poor injection engines. Those two areas are challenging to clean because the gasses going through are cooled.

Also, it is difficult to remove existing deposits in these areas. However, by using a high-quality conditioner with the fuel catalyst in both diesel and petrol applications, you’ll at least give the engine and emission control components a much easier life. This is because the engine and emissions systems will have fewer carbons to manage. This results in fewer deposits and hopefully removes the need to use high-strength cleaners or invasive measures to remove carbons manually.

What about the safety of cleaners and the risk of the fuel system or engine damage?

Providing products are used as per the instructions, the risk of any damage is incredibly low. The few rare cases of alleged damage we have witnessed weren’t caused by a product. The product just revealed or exacerbated an underlying mechanical issue with the fuel system.  Still, this is incredibly rare.

Furthermore, manufacturers err on the side of caution, so even if a product is used aggressively or improperly, it is still likely to be safe to use up until a certain point.

To summarise, fuel system deposits are generally dissolved, dispersed, and combusted naturally. Carbon is usually combusted through heat and added fuel-borne catalyst. They are proven safe processes when used correctly and responsibly.

airflow sensor cleanersar6200carbon cleanercarbon removaldpf cleanerdpf cleanersdpf cleaningdpf removalegr cleaneregr cleaningfuel additivefuel additivesfuel catalystfuel conditioner
Cetane Boosters

Cetane Booster – What is the Best?

May 2, 2014 Andy 17 Comments

The overall quality of diesel fuel is dependent on several factors. These include BTU value, viscosity, pour flow point, aromatic and paraffinic content, and resistance to contaminant buildup such as water and bacteria. A diesel fuel’s quality also is very dependent on its cetane number.

The cetane number (CN) is an index of the ignition point or combustion quality of diesel fuel and is measured using an ASTM D613 test.  Standard European BS EN590 diesel from the pump typically has a minimum cetane number of around 51, with premium pump diesel a little higher.   Depending on engine design, driving conditions, and so on, the optimum cetane value for most vehicles is around the mid to high 50s. Any value greater than 60 will not achieve any additional benefits and, in most cases, will alter ignition timing to the degree that power is lost.

Matching cetane to the engine is essential to maximize the engine’s performance.  Biodiesel fuels in particular, especially homemade brews, usually start with a much lower cetane number, so cetane improvement for these fuels is essential.

A fuel with too low of a cetane number for a particular engine will result in reduced cold-start ability, rough running, excess engine noise/vibration, and reduced combustion quality.  This leads to reduced performance, excess emissions, and carbon buildup throughout the engine and emission system components (intake, EGR, DPF, etc.)

A higher cetane fuel that is a proper match for the engine will reduce ignition delay, improve overall combustion quality, liberate more BTU (energy) from the fuel, and improve performance and MPG.  It also will reduce engine noise, deposit buildup, and exhaust emissions.

What should I look for in a cetane booster?

Contrary to some propaganda, alkyl nitrates still offer the most significant improvement in cetane number, with measured increases of up to eight points.  When it comes to alkyl nitrates, 2-Ethylhexyl nitrate (2-EHN) is the most popular and most respected. It offers a more consistent ignition quality while reducing unwanted and adverse combustion conditions.

Fuel additive manufacturers recognize the benefits of boosting the cetane number and using 2-EHN so much now that most offer cetane improvers.  The question in this case is, what are you getting for your money?

From a close examination, it appears many cetane boosters contain useless fillers.  Most manufacturers still insist on the single bottle per tank philosophy to maximize profits.  Some 200-300ml bottles that treat a single tank of fuel have as little as 20% active ingredients.  This is lucrative for the manufacturer but not a good value for the consumer.  Therefore, it is important to understand what you are getting for your money.

The optimum amount of 2-EHN is around 20-100ml per tank of fuel, depending on the engine and base cetane level.  As 2-EHN can reduce lubricity, a lubricant must be blended in.  To ensure you are getting the best value, ensure the product contains 2-EHN as its base, and a reasonable proportion of the remainder contains beneficial ingredients, such as lubricant, detergent, etc.

UPDATED AUG 2022 – So what do we recommend and why?

Active cetane improvers are essentially a form of fuel modification, or more accurately, combustion modification.  However, when combined with the correct fuel catalyst technology and lubricity additives, they can turn the most mediocre pump fuels and biodiesels into super diesel that will outperform the best premium pump fuels.

Two products to note:

Oilsyn® Diesel Race DNA and Archoil® AR6900-D MAX.  Rather than introduce another diluted cetane booster, they released a concentrated chemistry product containing 100% active ingredients. They deliver optimum increases in cetane while being able to treat multiple tanks of fuel rather than just one.

Diesel Race DNA contains the highest levels of 2-EHN of any compound diesel conditioner and the highest performing diesel lubricant on the market at this time, with an HFRR test of below 180!  AR6900-D is a careful balance of cetane improver, detergent, lubricant and combustion catalyst.  Both protect the entire fuel system against the harmful effects of low lubricity and low sulphur fuels.  This results in an optimum combustion condition, comprehensive fuel system protection and cleaning, increased performance, and reduction in harmful exhaust emissions.

Summary:

For the ultimate performance and protection – use Oilsyn Diesel Race DNA.

For an all-around product that increases cetane, cleans and protects – use Archoil AR6900-D

Either of the above work out cheaper per tank than upgrading to premium diesel at the pump.

2-ehn2ehncetanecetane boostercetane boosterscetane improverfuel additivefuel additivesfuel conditionerimprove mpg
Octane Boosters
Fuel Quality

Premium Diesel Versus Standard Diesel Fuel

February 6, 2014 Andy 2 Comments

In our work, we are frequently asked whether premium diesel fuel is superior to standard diesel fuel. And our short answer is always a resounding, “Yes.” But more explanation is needed when it comes to the other big question regarding premium diesel fuel – such as whether it is worth its higher price.

Premium diesel from the pump contains more detergent and additives than standard diesel fuel, which helps to improve an engine’s combustion performance. Depending on engine design, using a premium diesel usually results in an increase in performance and MPG, as well as reduced engine emissions and similar benefits.

So yes, premium diesel is better than standard diesel. But is it worth its higher price tag?

On that matter, we are not so sure. The main issue is that premium diesel fuels could be much better considering the significant extra cost per litre. The additional detergent currently included is barely enough to retain a clean engine on most fuel systems and engine types and fails to actively remove existing deposits. Unfortunately, we find that diesel vehicles solely using premium diesel fuels continue accumulating deposits. Not so much in the fuel system, but in the combustion area, emission components (EGR, DPF), intake manifold, intake valves, etc. Using a premium diesel will undoubtedly delay the formation of carbon deposits in these areas. But don’t expect miracles in regards to cleaning performance. The increased bio-diesel percentage contributes to an increase in fuel system contamination, biological degradation, and carbon build-up. Unfortunately, current fuels do not do enough to address these issues.

Please note, in the manufacturers’ defense, there are regulatory considerations, such as the outdated BS EN590 specification, that control what additives can be included in fuel. But those regulations are irrelevant to whether premium diesel, as it is made today, is a good value for the price you pay at the pump.

So if premium fuel isn’t worth the extra cost and standard diesel is lacking, what should you do? We suggest adding a high-quality diesel fuel conditioner with combustion catalyst technology to standard diesel fuel. Doing this will generally create a fuel that will outperform a premium diesel and be more cost-effective per tank. We have substantial testimony, as well as research data, that supports this. More complete fuel conditioners contain effective technologies to proactively clean and remove existing deposits, lubricate the diesel pump, remove water, prevent fuel degradation or contamination, lower emissions, improve performance, increase MPG, and so on.

It is simply a case of weighing the benefits of premium diesel versus the additional benefits of a fuel conditioner while also considering convenience and cost.

Another issue to consider in this debate is consistency. It is not uncommon to encounter variances in quality with fuel from the same gas station. From what we understand, distribution agreements between the fuel retailers and refineries call for gas stations to sell fuel from the nearest refinery in the area, regardless of the brand. Additive packs are added at the refinery or directly into the station fuel tanks.

The same variance applies to petrol. Regular octane tests will reveal startling differences in fuel octane. One week it tests at 95.6, the next at 96.8, and so forth. As you can imagine, this makes testing octane boosters extremely difficult because base fuels can be inconsistent.

Some advice we will add is to “know” your petrol station. When possible, purchase fuels from stations you know have a high fuel turnover. Try to avoid filling your vehicle from tanks running low and those that have just been filled, as this can agitate deposits and moisture. If you see a tanker, come back later. A fuel conditioner should protect against fuel’s inherent issues and inconsistencies.

If you require any advice or help, please don’t hesitate to contact us and either I or a member of my team will be pleased to assist you.

BS EN590BS EN590 dieselfuel conditionerpremium dieselpump dieselstandard diesel

categories

Categories
  • Air Intake Cleaning (1)
  • Best Motor Oil (2)
  • Biodiesel & Biofuels (2)
  • Car Emissions (1)
  • Carbon Cleaners (6)
  • Cetane Boosters (1)
  • DPF Cleaning & Maintenance (2)
  • EGR Cleaning & Maintenance (2)
  • Engine Cleaning (1)
  • Engine Flush & Compression Restore (2)
  • Engine Oils (2)
  • Engine Tuning / Mapping & Tuning Boxes (2)
  • Fleet & Commercial Solutions (1)
  • Fuel Addtives (9)
  • Fuel Quality (2)
  • Fuel Saving (6)
  • Fuel System Cleaning (8)
  • Heating Oil Additives (1)
  • Hybrids (1)
  • Misfuelling Devices (1)
  • Octane Boosters (2)
  • Oil Additives (1)
  • Pentosin (1)
  • Race Fuel (1)
  • Reducing Emissions (1)
  • Smart O Plug (1)
  • TFSI Direct Injection Carbon (1)
  • Turbo Cleaning & Maintenance (1)
  • Uncategorized (3)
  • Waterless Engine Coolant (1)

Archives

  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2020
  • April 2020
  • January 2017
  • February 2016
  • January 2016
  • September 2015
  • May 2015
  • April 2015

Tag Cloud

Tags
airflow sensor cleaners, ar6200, BS EN590, BS EN590 diesel, carbon removal, dpf cleaner, dpf cleaners, dpf cleaning, dpf removal, egr cleaner, egr cleaning, engine mapping, engine oil, engine oil quality, fuel additive, fuel additives, fuel catalyst, fuel conditioner, fuel conspiracy, Fuel Economy, fuel saver, fuel savers, fuel saving, fully synthetic oil, gas saver, gas savers, improve mpg, increase gas mileage, increase mpg, low sap oil, MON, mpg, mpg gains, octane, octane booster, octane test, oil additives, oil conspiracy, premium diesel, pump diesel, reduce fuel costs, remap, RON, standard diesel, tuning box
Contact us

Email: support@fueltechexperts.com

Info
  • Privacy Policy
  • Terms of Use
  • Sitemap
Find us on:

Subscribe

* indicates required

Copyright © 2011-2021 Fuel Tech Experts All Rights Reserved.